
PM101x
Write Your Own Application

• Drivers
• PC Interface
• Programmer's Reference

Version:
Date:

1.0
12-Aug-2019

© 2019 Thorlabs1

PM101x

1 Write Your Own Application

Thorlabs provides all information to write custom made applications for Thorlabs products.
In order to write a custom made application, a specific instrument driver and some tools for use
in different programming environments are required.

For PM101x, all inofrmation can be found in the documentation for the OPM software, the
Thorlabs software to sterr PM101x. The OPM and respective information can be downloaded
from the OPM website.

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=OPM

© 2019 Thorlabs

2 Computer Interface

2

2 Computer Interface
For communication between the PM101x and the PC with custom made software, the following
interfaces can be used:

All PM101x optical power meters have a USB 2.0 interface that allows to send commands from
a host computer to the instrument and vice versa. The connection between PC and PM101x is
accomplished by a USB cable with a male type ‘A’ connector at the PC side and a type ‘Mini-B’
connector on the instrument side.

PM101:

The PM101 further has a DA15 port with a UART interface that allows to send commands from
a host computer to the instrument and vice versa.

PM101R:

The PM101R further has a serial DE9 interface that allows to send commands from a host
computer to the instrument and vice versa.

2.1 Serial Interface with UART

To use the PM101 with UART, the unit must be switched from RS232 operation with ±5 V to
UART operation.

To do so, the PM101 must be opened to perform the following operations:

1. Remove the bolts from the 15pin sub-d connector.

2. Remove the 4 TX9 screws in the sensor front panel.

3. Pull out the PCB.

4. Move both switches from PC RS232 Operation (default - both switches in upper position) to
± 5 V level UART (both switches in lower position)

 Note

For instruction on how to switch to operation with 3.3 V, please contact Thorlabs .17

© 2019 Thorlabs3

PM101x

3 Programmers Reference PM101x

3.1 SCPI Commands

SCPI (Standard Commands for Programmable Instruments) is an ASCII-based instrument
command language designed for test and measurement instruments.

 Note

The commands listed in this section are supported by a USBTMC protocol and can be used
with the instrument driver TLPM.dll.

3.2 Introduction to the SCPI Language

SCPI commands are based on a hierarchical structure, also known as a tree system. In this
system, associated commands are grouped together under a common node or root, thus form-
ing subsystems. A portion of the SENSE subsystem is shown below to illustrate the tree sys-
tem.

[SENSe:]
 CORRection
 :COLLect
 :ZERO
 [:INITiate]
 :ABORt
 :STATe?
 :MAGNitude?
 :BEAMdiameter {MINimum|MAXimum|DEFault|<numeric_value>[mm]}
 :BEAMdiameter? [{MINimum|MAXimum|DEFault}]
 :WAVelength {MINimum|MAXimum|<numeric_value>[nm]}
 :WAVelength? [{MINimum|MAXimum}]
 :POWer
 [:PDIode]
 [:RESPonse] MINimum|MAXimum|DEFault|<numeric_value>[A]}
 [:RESPonse]? [{MINimum|MAXimum|DEFault}]
 :THERmopile
 [:RESPonse] {MINimum|MAXimum|DEFault|<numeric_value>[V]}
 [:RESPonse]? [{MINimum|MAXimum|DEFault}]

SENSe is the root keyword of the command, CORRection is the second-level keyword, and
COLLect and BEAMdiameter are third-level keywords, and so on.
A colon (:) separates a command keyword from a lower-level keyword.

© 2019 Thorlabs

3 Programmers Reference PM101x

4

Command Format

The format used to show commands in this manual is shown below:

CURRent[:DC]:RANGe {MINimum|MAXimum|<numeric_value>[A]}
CORRection:BEAMdiameter {MINimum|MAXimum|DEFault|<numeric_value>[mm]}

The command syntax shows most commands (and some parameters) as a mixture of upper-
and lower-case letters. The upper-case letters indicate the abbreviated spelling for the com-
mand. For shorter program lines, send the abbreviated form. For better program readability,
send the long form.

For example, in the above syntax statement, CURR and CURRENT are both acceptable forms.
You can use upper- or lower-case letters. Therefore, CURRENT, current and Current are
all acceptable. Other forms, such as CUR and CURREN, will generate an error.

Braces ({ }) enclose the parameter choices for a given command string. The braces are not
sent with the command string. A vertical bar (|) separates multiple parameter choices for a
given command string.
Triangle brackets (< >) indicate that you must specify a value for the enclosed parameter. For
example, the above syntax statement shows the range parameter enclosed in triangle brackets.
The brackets are not sent with the command string. You must specify a value for the parameter
(such as "CURR:DC:RANG 50E-6").
Some parameters are enclosed in square brackets ([]). The brackets indicate that the
parameter is optional and can be omitted. The brackets are not sent with the command string.
In this example [:DC] can be omitted, so the command string can be shortened to
“CURR:RANG 50E-6”. If you do not specify a value for an optional parameter, the power/en-
ergy meter chooses a default value.

Command Separators
A colon (:) is used to separate a command keyword from a lower-level keyword. You must in-
sert a blank space to separate a parameter from a command keyword. If a command requires
more than one parameter, you must separate adjacent parameters using a comma as shown
below:

"SYST:TIME 10, 34, 48"

A semicolon (;) is used to separate commands within the same subsystem, and can also mini-
mize typing. For example, sending the following command string:

"CORR:BEAM 1; WAVE 1310"

... is the same as sending the following two commands:

"CORR:BEAM 1"
"CORR:WAVE 1310"

Use a colon and a semicolon to link commands from different subsystems. For example, in the
following command string, an error is generated if you do not use both the colon and semi-
colon:

"CORR:BEAM 1;:AVER 300"

Using the MIN and MAX Parameters
You can substitute MINimum or MAXimum in place of a parameter for many commands. For ex-
ample, consider the following command:

CURRent[:DC]:RANGe {MINimum|MAXimum|<numeric_value>[A]}

Instead of selecting a specific current range, you can substitute MIN to set the range to its min-
imum value or MAX to set the range to its maximum value.

© 2019 Thorlabs5

PM101x

Querying Parameter Settings
You can query the current value of most parameters by adding a question mark (?) to the com-
mand. For example, the following command sets the operating wavelength to 1550 nm:
"CORR:WAVE 1550"
You can query the operating wavelength by executing: "CORR:WAVE?"
You can also query the minimum or maximum operating wavelength allowed as follows:

"CORR:WAVE? MIN"
"CORR:WAVE? MAX"

 Caution

If you send two query commands without reading the response from the first, and then attempt
to read the second response, you may receive some data from the first response followed by
the complete second response. To avoid this, do not send a query command without reading
the response. When you cannot avoid this situation, send a device clear before sending the
second query command.

SCPI Command Terminators
A command string sent to the power/energy meter must terminate with a <new line> character.
The IEEE-488 EOI (end-or-identify) message is interpreted as a <new line> character and can
be used to terminate a command string in place of a <new line> character. A <carriage return>
followed by a <new line> is also accepted. Command string termination will always reset the
current SCPI command path to the root level.

IEEE488.2 Common Commands

The IEEE-488.2 standard defines a set of common commands that perform functions like reset,
self-test, and status operations. Common commands always begin with an asterisk (*), are four
to five characters in length, and may include one or more parameters. The command keyword
is separated from the first parameter by a blank space. Use a semicolon (;) to separate mul-
tiple commands as shown below:

"*RST; *CLS; *ESE 32; *OPC?"

SCPI Parameter Types

The SCPI language defines several different data formats to be used in program messages
and response messages.

Numeric Parameters Commands that require numeric parameters will accept all commonly
used decimal representations of numbers including optional signs, decimal points, and scientific
notation.
Special values for numeric parameters like MINimum, MAXimum and DEFault are also ac-
cepted. You can also send engineering unit suffixes with numeric parameters (e.g., M,K, or u).
If only specific numeric values are accepted, the power/energy meter will automatically round
the input numeric parameters. The following command uses a numeric parameter:

POWer:REFerence {MINimum|MAXimum|DEFault|<numeric_value>[W]}

Discrete Parameters Discrete parameters are used to program settings that have a limited
number of values (like W,DBM). They can have a short form and a long form just like command
keywords. You can mix upper- and lower-case letters. Query responses will always return the
short form in all upper-case letters. The following command uses discrete parameters:

© 2019 Thorlabs

3 Programmers Reference PM101x

6

POW:UNIT {W|DBM}

Boolean Parameters Boolean parameters represent a single binary condition that is either true
or false. For a false condition, the power/energy meter will accept “OFF” or “0”. For a true
condition, the meter will accept “ON” or “1”. When you query a boolean setting, the instrument
will always return “0” or “1”. The following command uses a boolean parameter:

CURRent:RANGe:AUTO {OFF|0|ON|1}

String Parameters String parameters can contain virtually any set of ASCII characters. A string
must begin and end with matching quotes; either with a single quote or with a double quote.
You can include the quote delimiter as part of the string by typing it twice without any charac-
ters in between. The following command uses a string parameter:

DIAG:CALString <quoted string>

© 2019 Thorlabs7

PM101x

3.3 IEEE488.2 Common Commands

Common commands are device commands that are common to all devices according to the
IEEE488.2 standard. These commands are designed and defined by this standard. Most of the
commands are described in detail in this section. The following common commands associated
with the status structure are covered in the “Status Structure” section: *CLS, *ESE, *ESE?,
*ESR?, *SRE, *SRE?, *STB?

3.3.1 Command Summary

Mnemonic Name Description

*CLS Clear status Clears all event registers and Error Queue

*ESE
<NRf> Event enable command Program the Standard Event Enable Register

*ESE? Event enable query Read the Standard Event Enable Register

*ESR? Event status register query Read and clear the Standard Event Register

*IDN? Identification query Read the unit’s identification string

*OPC Operation complete command
Set the Operation Complete bit in the Stand-
ard Event Register

*OPC? Operation complete query
Places a “1” into the output queue when all
device operations have been completed

*RST Reset command Returns the unit to the *RST default condition

*SRE
<NRf>

Service request enable com-
mand

Programs the Service Request Enable Re-
gister

*SRE? Service request enable query Reads the Service Request Enable Register

*STB? Status byte query Reads the Status Byte Register

*TST? Self-test query
Performs the unit’s self-test and returns the
result.

*WAI Wait-to-continue command
Wait until all previous commands are ex-
ecuted

© 2019 Thorlabs

3 Programmers Reference PM101x

8

3.3.2 Command Reference

*IDN? – identification query - read identification code
The identification code includes the manufacturer, model code, serial number, and firmware re-
vision levels and is sent in the following format: THORLABS,MMM,SSS,X.X.X
Where: MMM is the model code

SSS is the serial number
X.X.X is the instrument firmware revision level

*OPC – operation complete - set OPC bit
*OPC? – operation complete query – places a “1” in output queue
When *OPC is sent, the OPC bit in the Standard Event Register will set after all pending com-
mand operations are complete. When *OPC? is sent, an ASCII “1” is placed in the Output
Queue after all pending command operations are complete.
Typically, either one of these commands is sent after the INITiate command. The INITiate com-
mand is used to take the instrument out of idle in order to perform measurements. While oper-
ating within the trigger model layers, many sent commands will not execute. After all pro-
grammed operations are completed, the instrument returns to the idle state at which time all
pending commands (including *OPC and/or *OPC?) are executed. After the last pending com-
mand is executed, the OPC bit and/or an ASCII “1” is placed in the Output Queue.
When *OPC is sent, the OPC bit in the Standard Event Register will set after all pending com-
mand operations are complete. When *OPC? is sent, an ASCII “1” is placed in the Output
Queue after all pending command operations are complete.

*RST – reset – return instrument to defaults
When the *RST command is sent, the instrument performs the following operations:

· Returns the instrument to the default conditions
· Cancels all pending commands.
· Cancels response to any previously received *OPC and *OPC? commands.

*TST? – self-test query – run self test and read result
Use this query command to perform the instrument self-test routine. The command places the
coded result in the Output Queue. A returned value of zero (0) indicates that the test passed,
other values indicate that the test failed.

*WAI – wait-to-continue – wait until previous commands are completed
The *WAI command is a no operation command for the instrument and thus, does not need to
be used. It is there for conformance to IEEE488.2.

© 2019 Thorlabs9

PM101x

3.4 PM101x Specific SCPI Command Reference

Command Driver

Required IEEE488.2 Common Commands

*CLS viClear

*ESE PM100D_writeRegister

*ESE? PM100D_readRegister

*ESR? PM100D_readRegister

*IDN? PM100D_identificationQuery

*OPC

*OPC?

*RST PM100D_reset

*SRE PM100D_writeRegister

*SRE? PM100D_readRegister

*STB? PM100D_readRegister

*TST? PM100D_selfTest

*WAI

SYSTem subsystem. Some are required SCPI commands

© 2019 Thorlabs

3 Programmers Reference PM101x

10

SYSTem:ERRor[:NEXT]? PM100D_errorQuery, PM100D_er-
rorMessage

SYSTem:VERSion? PM100D_revisionQuery

SYST:SER:TRAN:BAUD? TLPM_getDeviceBaudrate

SYST:SER:TRAN:BAUD TLPM_setDeviceBaudrate

STATus subsystem. Some are required SCPI commands

STATus:OPERation[:EVENt]? PM100D_readRegister

STATus:OPERation:CONDition? PM100D_readRegister

STATus:OPERation:ENABle PM100D_writeRegister

STATus:OPERation:ENABle? PM100D_readRegister

STATus:OPERation:PTRansition PM100D_writeRegister

STATus:OPERation:PTRansition? PM100D_readRegister

STATus:OPERation:NTRansition PM100D_writeRegister

STATus:OPERation:NTRansition? PM100D_readRegister

STATus:QUEStionable[:EVENt]? PM100D_readRegister

STATus:QUEStionable:CONDition? PM100D_readRegister

STATus:QUEStionable:ENABle PM100D_writeRegister

STATus:QUEStionable:ENABle? PM100D_readRegister

STATus:QUEStionable:PTRansition PM100D_writeRegister

STATus:QUEStionable:PTRansition? PM100D_readRegister

STATus:QUEStionable:NTRansition PM100D_writeRegister

STATus:QUEStionable:NTRansition? PM100D_readRegister

STATus:AUXiliary[:EVENt]? PM100D_readRegister

STATus:AUXiliary:CONDition? PM100D_readRegister

STATus:AUXiliary:ENABle PM100D_writeRegister

STATus:AUXiliary:ENABle? PM100D_readRegister

© 2019 Thorlabs11

PM101x

STATus:AUXiliary:PTRansition PM100D_writeRegister

STATus:AUXiliary:PTRansition? PM100D_readRegister

STATus:AUXiliary:NTRansition PM100D_writeRegister

STATus:AUXiliary:NTRansition? PM100D_readRegister

STATus:PRESet PM100D_presetRegister

CALibration subsystem

CALibration:STRing? PM100D_getCalibrationMsg

SENSe subsystem

SENSe[1]:AVERage[:COUNt] PM100D_setAvgTime

PM100D_setAvgCnt

SENSe[1]:AVERage[:COUNt]? PM100D_getAvgTime

PM100D_getAvgCnt

SENSe[1]:CORRection[:LOSS[:INPut[:MAGNitude]]] {MINimum|MAXimum|DEFault|
<numeric_value>[dB]}

PM100D_setAttenuation

SENSe[1]:CORRection[:LOSS[:INPut[:MAGNitude]]]? [{MINimum|MAXimum|DEFault}] PM100D_getAttenuation

SENSe[1]:CORRection:COLLect:ZERO[:INITiate] PM100D_startDarkAdjust

SENSe[1]:CORRection:COLLect:ZERO:ABORt PM100D_cancelDarkAdjust

SENSe[1]:CORRection:COLLect:ZERO:STATe? PM100D_getDarkAdjustState

SENSe[1]:CORRection:COLLect:ZERO:MAGNitude? PM100D_getDarkOffset

SENSe[1]:CORRection:CSET[1...5]:STATe? TLPM_getPowerCalibrationPoint-
sState

SENSe[1]:CORRection:CSET[1...5]:STATe true TLPM_setPowerCalibrationPoint-
sState

SENSe[1]:CORRection:CSET[1...5]:PREamble? TLPM_getPowerCalibrationPoint-
sInformation

SENSe[1]:CORRection:CSET:PREamble <serial of sensor> <cal date> <author>
<sensorPos: 0, 1>

SENSe[1]:CORRection:CSET[1...5]:POINts? TLPM_getPowerCalibrationPoints

© 2019 Thorlabs

3 Programmers Reference PM101x

12

SENSe[1]:CORRection:CSET:POINts <point list> TLPM_setPowerCalibrationPoints

SENSe[1]:CORRection:CSET[1...5]:DEFine

SENSe[1]:Reinit TLPM_reinitSensor

SENSe[1]:CORRection:BEAMdiameter {MINimum|MAXimum|DEFault|<numeric_-
value>[m]}

PM100D_setBeamDia

SENSe[1]:CORRection:BEAMdiameter? [{MINimum|MAXimum|DEFault}] PM100D_getBeamDia

SENSe[1]:CORRection:WAVelength {MINimum|MAXimum|<numeric_value>[m]} PM100D_setWavelength

SENSe[1]:CORRection:WAVelength? [{MINimum|MAXimum}] PM100D_getWavelength

SENSe[1]:CORRection:POWer[:PDIode][:RESPonse] {MINimum|MAXimum|DEFault|
<numeric_value>[A]}

PM100D_setPhotodiodeResponsiv-
ity

SENSe[1]:CORRection:POWer[:PDIode][:RESPonse]? [{MINimum|MAXimum|DEFault}] PM100D_getPhotodiodeRespons-
ivity

SENSe[1]:CORRection:POWer:THERmopile[:RESPonse] {MINimum|MAXimum|
DEFault|<numeric_value>[V]}

PM100D_setThermopileResponsiv-
ity

SENSe[1]:CORRection:POWer:THERmopile[:RESPonse]? [{MINimum|MAXimum|
DEFault}]

PM100D_getThermopileResponsiv-
ity

SENSe[1]:CURRent[1][:DC]:RANGe:AUTO {OFF|0|ON*|1} PM100D_setCurrentAutoRange

SENSe[1]:CURRent[1][:DC]:RANGe:AUTO? PM100D_getCurrentAutoRange

SENSe[1]:CURRent[1][:DC]:RANGe[:UPPer] {MINimum|MAXimum|<numeric_-
value>[A]}

PM100D_setCurrentRange

SENSe[1]:CURRent[1][:DC]:RANGe[:UPPer]? [{MINimum|MAXimum}] PM100D_getCurrentRange

SENSe[1]:CURRent[1][:DC]:REFerence {MINimum|MAXimum|DEFault|<numeric_-
value>[A]}

PM100D_setCurrentRef

SENSe[1]:CURRent[1][:DC]:REFerence? [{MINimum|MAXimum|DEFault}] PM100D_getCurrentRef

SENSe[1]:CURRent[1][:DC]:REFerence:STATe {OFF*|0|ON|1} PM100D_setCurrentRefState

SENSe[1]:CURRent[1][:DC]:REFerence:STATe? PM100D_getCurrentRefState

SENSe[1]:POWer[:DC]:RANGe:AUTO {OFF|0|ON*|1} PM100D_setPowerAutoRange

© 2019 Thorlabs13

PM101x

SENSe[1]:POWer[:DC]:RANGe:AUTO? PM100D_getPowerAutorange

SENSe[1]:POWer[:DC]:RANGe[:UPPer] {MINimum|MAXimum|<numeric_value>[W]} PM100D_setPowerRange

SENSe[1]:POWer[:DC]:RANGe[:UPPer]? [{MINimum|MAXimum}] PM100D_getPowerRange

SENSe[1]:POWer[:DC]:REFerence {MINimum|MAXimum|<numeric_value>[W]} PM100D_setPowerRef

SENSe[1]:POWer[:DC]:REFerence? [{MINimum|MAXimum}] PM100D_getPowerRef

SENSe[1]:POWer[:DC]:REFerence:STATe {OFF*|0|ON|1} PM100D_setPowerRefState

SENSe[1]:POWer[:DC]:REFerence:STATe? PM100D_getPowerRefState

SENSe[1]:POWer[:DC]:UNIT {DBM|W} PM100D_setPowerUnit

SENSe[1]:POWer[:DC]:UNIT? PM100D_getPowerUnit

SENSe[1]:VOLTage[:DC]:RANGe:AUTO {OFF|0|ON*|1} PM100D_setVoltageAutoRange

SENSe[1]:VOLTage[:DC]:RANGe:AUTO? PM100D_getVoltageAutorange

SENSe[1]:VOLTage[:DC]:RANGe[:UPPer] {MINimum|MAXimum|<numeric_value>[V]} PM100D_setVoltageRange

SENSe[1]:VOLTage[:DC]:RANGe[:UPPer]? [{MINimum|MAXimum}] PM100D_getVoltageRange

SENSe[1]:VOLTage[:DC]:REFerence {MINimum|MAXimum|DEFault|<numeric_-
value>[V]}

PM100D_setVoltageRef

SENSe[1]:VOLTage[:DC]:REFerence? [{MINimum|MAXimum|DEFault}] PM100D_getVoltageRef

SENSe[1]:VOLTage[:DC]:REFerence:STATe {OFF*|0|ON|1} PM100D_setVoltageRefState

SENSe[1]:VOLTage[:DC]:REFerence:STATe? PM100D_getVoltageRefState

SENSe5:CORRection:COEFficient:RESistance {MINimum|MAXimum|DEFault|<numer-
ic_value>[Ohm]}

PM100D_setExtNtcParameter

SENSe5:CORRection:COEFficient:RESistance? [{MINimum|MAXimum|DEFault}] PM100D_getExtNtcParameter

SENSe5:CORRection:COEFficient:BETA {MINimum|MAXimum|DEFault|<numeric_-
value>[K]}

PM100D_setExtNtcParameter

© 2019 Thorlabs

3 Programmers Reference PM101x

14

SENSe5:CORRection:COEFficient:BETA? [{MINimum|MAXimum|DEFault}] PM100D_getExtNtcParameter

SENSe5: RESistance:DATA? PM100D_measExtNtcResistance

SENSe5: TEMPerature:DATA? PM100D_measExtNtcTemperature

Source subsystem

SOURce:DIGital:DATA <numeric_value> PM100D_setDigIoOutput

SOURce:DIGital:DATA? PM100D_getDigIoOutput

SOURce:DIGital:ENABle <numeric_value> PM100D_setDigIoDirection

SOURce:DIGital:ENABle? PM100D_getDigIoDirection

SOURce2:VOLTage[:LEVel][:IMMediate][:AMPLitude] {<numeric value> | MIN | MAX} PM100D_setAnalogOutput

SOURce2:VOLTage[:LEVel][:IMMediate][:AMPLitude]? {<numeric value> | MIN | MAX} PM100D_getAnalogOutput

SOURce2:VOLTage:CORRection:SLOPe[:OUTPut][:MAGNitude] {<numeric value> | MIN
| MAX}

PM100D_setAnalogOutputSlope

SOURce2:VOLTage:CORRection:SLOPe[:OUTPut][:MAGNitude]? [{MIN | MAX}] PM100D_getAnalogOutputSlope

INPut subsystem

INPut[:PDIode]:FILTer[:LPASs][:STATe] {OFF*|0|ON|1} PM100D_setInputFilterState

INPut[:PDIode]:FILTer[:LPASs][:STATe]? PM100D_getInputFilterState

INPut:THERmopile:ACCelerator[:STATe] {OFF*|0|ON|1} PM100D_setAccelState

INPut:THERmopile:ACCelerator[:STATe]? PM100D_getAccelState

INPut:THERmopile:ACCelerator:TAU {MINimum|MAXimum|DEFault|<numeric_-
value>[s]}

PM100D_setAccelTau

INPut:THERmopile:ACCelerator:TAU? [{MINimum|MAXimum|DEFault}] PM100D_getAccelTau

INPut:THERmopile:ACCelerator:AUTO {OFF|0|ON*|1} PM100D_setAccelMode

INPut:THERmopile:ACCelerator:AUTO? PM100D_getAccelMode

INPut:ADAPter[:TYPE] {PHOTodiode|THERmal} PM100D_setInputAdapterType

INPut:ADAPter[:TYPE]? PM100D_getInputAdapterType

© 2019 Thorlabs15

PM101x

Measurement commands

INITiate[:IMMediate]

INITiate:CONTinuous

ABORt

CONFigure[:SCALar][:POWer]

CONFigure[:SCALar]:CURRent[:DC]

CONFigure[:SCALar]:VOLTage[:DC]

CONFigure[:SCALar]:PDENsity

CONFigure[:SCALar]:RESistance

CONFigure[:SCALar]:TEMPerature

MEASure[:SCALar][:POWer]? PM100D_measPower

MEASure[:SCALar]:CURRent[:DC]? PM100D_measCurrent

MEASure[:SCALar]:VOLTage[:DC]? PM100D_measVoltage

MEASure[:SCALar]:FREQuency? PM100D_measFreq

MEASure[:SCALar]:PDENsity? PM100D_measPowerDens

MEASure[:SCALar]:RESistance?

MEASure[:SCALar]:TEMPerature? PM100D_measSensTemperature

FETCh?

READ?

CONFigure?

© 2019 Thorlabs

3 Programmers Reference PM101x

16

Serial Interface RS232 (Default)

To operate the PM101 via RS232, the RxD, TxD and ground need to be wired from the 15pin D-Sub connector to

a 9 pin female connector to perform the PC connection:

PM101 DA-15 DE-9 Male PC (DE-9 Female)

Pin 7 – TxD Pin 2 RxD

Pin 8 – RxD Pin 3 TxD

Pin 15 – Ground Pin 5 Ground

Set the port setup as following

Parameter Setting

Baud Rate 115.200 Bit/s (default)

Can be configured between 9.600 and 256.000 Bit/s

Data Bits 8

Parity None

Stop Bits 1

Flow Control None

Termination Character LF (x0A; \n) – the termination character needs to be enabled

© 2019 Thorlabs17

PM101x

3.5 Thorlabs Wordwide Contact

USA, Canada, and South America

Thorlabs, Inc.
56 Sparta Avenue
Newton, NJ 07860
USA
Tel: 973-300-3000
Fax: 973-300-3600
www.thorlabs.com
www.thorlabs.us (West Coast)
Email: sales@thorlabs.com
Support: techsupport@thorlabs.com

UK and Ireland
Thorlabs Ltd.
1 Saint Thomas Place, Ely
Cambridgeshire CB7 4EX
United Kingdom
Tel: +44-1353-654440
Fax: +44-1353-654444
www.thorlabs.com
Email: sales.uk@thorlabs.com
Support: techsupport.uk@thorlabs.com

Europe
Thorlabs GmbH
Hans-Böckler-Str. 6
85221 Dachau
Germany
Tel: +49-8131-5956-0
Fax: +49-8131-5956-99
www.thorlabs.de
Email: europe@thorlabs.com

Scandinavia
Thorlabs Sweden AB
Bergfotsgatan 7
431 35 Mölndal
Sweden
Tel: +46-31-733-30-00
Fax: +46-31-703-40-45
www.thorlabs.com
Email: scandinavia@thorlabs.com

France
Thorlabs SAS
109, rue des Côtes
78600 Maisons-Laffitte
France
Tel: +33-970 444 844
Fax: +33-825 744 800
www.thorlabs.com
Email: sales.fr@thorlabs.com

Brazil
Thorlabs Vendas de Fotônicos Ltda.
Rua Riachuelo, 171
São Carlos, SP 13560-110
Brazil
Tel: +55-16-3413 7062
Fax: +55-16-3413 7064
www.thorlabs.com
Email: brasil@thorlabs.com

Japan
Thorlabs Japan, Inc.
3-6-3 Kitamachi
Nerima-ku, Tokyo 179-0081
Japan
Tel: +81-3-6915-7701
Fax: +81-3-6915-7716
www.thorlabs.co.jp
Email: sales@thorlabs.jp

China
Thorlabs China
Room A101, No. 100
Lane 2891, South Qilianshan Road
Putuo District
Shanghai 200331
China
Tel: +86-21-60561122
Fax: +86-21-32513480
www.thorlabs.com
Email: chinasales@thorlabs.com

http://www.thorlabs.com
http://www.thorlabs.us
mailto:sales@thorlabs.com
mailto:techsupport@thorlabs.com
http://www.thorlabs.com
mailto:sales.uk@thorlabs.com
mailto:techsupport.uk@thorlabs.com
http://www.thorlabs.de
mailto:europe@thorlabs.com
http://www.thorlabs.com
mailto:scandinavia@thorlabs.com
http://www.thorlabs.com
mailto:sales.fr@thorlabs.com
http://www.thorlabs.com
mailto:brasil@thorlabs.com
http://www.thorlabs.jp
mailto:sales@thorlabs.jp
http://www.thorlabs.com
mailto:chinasales@thorlabs.com

www.thorlabs.com

	1 Write Your Own Application
	2 Computer Interface
	2.1 Serial Interface with UART

	3 Programmers Reference PM101x
	3.1 SCPI Commands
	3.2 Introduction to the SCPI Language
	3.3 IEEE488.2 Common Commands
	3.3.1 Command Summary
	3.3.2 Command Reference

	3.4 PM101x Specific SCPI Command Reference
	3.5 Thorlabs Wordwide Contact

